19 research outputs found

    A prototype telerobotic platform for live transmission line maintenance: review of design and development.

    Get PDF
    This paper reports technical design of a novel experimental test facility, using haptic-enabled teleoperation of robotic manipulators, for live transmission line maintenance. The goal is to study and develop appropriate techniques in repair overhead power transmission lines by allowing linemen to wirelessly guide a remote manipulator, installed on a crane bucket, to execute dexterous maintenance tasks, such as twisting a tie wire around a cable. Challenges and solutions for developing such a system are outlined. The test facility consists of a PHANToM Desktop haptic device (master site), an industrial hydraulic manipulator (slave site) mounted atop a Stewart platform, and a wireless communication channel connecting the master and slave sites. The teleoperated system is tested under different force feedback schemes, while the base is excited and the communication channel is delayed and/or lossy to emulate realistic network behaviors. The force feedback schemes are: virtual fixture, augmentation force and augmented virtual fixture. Performance of each scheme is evaluated under three measures: task completion time, number of failed trials and displacement of the slave manipulator end-effector. The developed test rig has been shown to be successful in performing haptic-enabled teleoperation for live-line maintenance in a laboratory setting. The authors aim at establishing a benchmark test facility for objective evaluation of ideas and concepts in the teleoperation of live-line maintenance tasks

    Clinical Study Treatment of Glioma Using neuroArm Surgical System

    Get PDF
    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location

    An Analysis of Power Consumption of Fluid-Driven Robotic Arms Using Isotropy Index: A Proof-of-Concept Simulation-Based Study

    No full text
    The manipulability of a robotic arm may be defined based on ease of motion in different directions or ease of applying force/torque. In this study, we use manipulability measures to investigate how the kinematics of robots can be employed to calculate the optimal power required to drive the actuation systems of their arms. We hypothesize that the isotropy measure is related to the power consumption of the robotic arm. In addition to theoretical aspects, we consider practical applications that can minimize power consumption in robotic systems. Since the method is simple to implement and has no assumption on the robot’s work environment or dependence on information on the main power supply, manipulability measures can be used as a tool to predict the power consumption of robotic manipulators

    An Analysis of Power Consumption of Fluid-Driven Robotic Arms Using Isotropy Index: A Proof-of-Concept Simulation-Based Study

    No full text
    The manipulability of a robotic arm may be defined based on ease of motion in different directions or ease of applying force/torque. In this study, we use manipulability measures to investigate how the kinematics of robots can be employed to calculate the optimal power required to drive the actuation systems of their arms. We hypothesize that the isotropy measure is related to the power consumption of the robotic arm. In addition to theoretical aspects, we consider practical applications that can minimize power consumption in robotic systems. Since the method is simple to implement and has no assumption on the robot’s work environment or dependence on information on the main power supply, manipulability measures can be used as a tool to predict the power consumption of robotic manipulators

    A Historical Review of Medical Robotic Platforms

    No full text
    This paper provides a brief history of medical robotic systems. Since the first use of robots in medical procedures, there have been countless companies competing to developed robotic systems in hopes to dominate a field. Many companies have succeeded, and many have failed. This review paper shows the timeline history of some of the old and most successful medical robots and new robotic systems. As the patents of the most successful system, i.e., Da Vinci® Surgical System, have expired or are expiring soon, this paper can provide some insights for new designers and manufacturers to explore new opportunities in this field

    A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications

    No full text
    Robotics is a rapidly growing field, and the innovative idea to scale down the size of robots to the nanometer level has paved a new way of treating human health. Nanorobots have become the focus of many researchers aiming to explore their many potential applications in medicine. This paper focuses on manufacturing techniques involved in the fabrication of nanorobots and their associated challenges in terms of design architecture, sensors, actuators, powering, navigation, data transmission, followed by challenges in applications. In addition, an overview of various nanorobotic systems addresses different architectures of a nanorobot. Moreover, multiple medical applications, such as oncology, drug delivery, and surgery, are reviewed and summarized

    An Application-Based Review of Haptics Technology

    No full text
    Recent technological development has led to the invention of different designs of haptic devices, electromechanical devices that mediate communication between the user and the computer and allow users to manipulate objects in a virtual environment while receiving tactile feedback. The main criteria behind providing an interactive interface are to generate kinesthetic feedback and relay information actively from the haptic device. Sensors and feedback control apparatus are of paramount importance in designing and manufacturing a haptic device. In general, haptic technology can be implemented in different applications such as gaming, teleoperation, medical surgeries, augmented reality (AR), and virtual reality (VR) devices. This paper classifies the application of haptic devices based on the construction and functionality in various fields, followed by addressing major limitations related to haptics technology and discussing prospects of this technology
    corecore